metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -N-benzyl-N-furfuryldithiocarbamato)-1:2 κ^3 S,S':S';2:1 κ^3 S,S':S'bis[(N-benzyl-N-furfuryldithiocarbamato- κ^2 S,S')cadmium]

Rajni Kant,^a* Vivek K. Gupta,^a Kamini Kapoor,^a P. Valarmathi^b and S. Thirumaran^b

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 2 November 2011; accepted 29 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.029; wR factor = 0.067; data-to-parameter ratio = 16.0.

In the centrosymmetric title compound, $[Cd_2(C_{13}H_{12}NOS_2)_4]$, pairs of dithiocarbamate ligands exhibit different structural functions. Each of the terminal ligands is bidentately coordinated to one Cd^{II} atom and forms a planar fourmembered CS₂Cd chelate ring, whereas pairs of the tridentate bridging ligands link two neighbouring Cd^{II} atoms, forming extended eight-membered C₂S₄Cd₂ tricyclic units whose geometry can be approximated by a chair conformation. The coordination polyhedron of the Cd^{II} atoms is a distorted square-pyramid. The five-membered furan ring and the benzene ring are disordered over two sets of sites with an occupancy ratio of 0.62 (8):0.38 (8).

Related literature

For related structures, see: Ivanov *et al.* (2006); Onwudiwe & Ajibade (2010); Yin *et al.* (2004). For the solid state structural chemistry of group XII 1,1-dithiolates, see: Tiekink (2003). Metal dithiocarbamate complexes can act as single source precursors in the synthesis of novel metal sulfide nanomaterials, see: Ajibade *et al.* (2011); Bera *et al.* (2010); Thomas *et al.* (2011). For the effect of organic substituents on the deposition temperature and deposition mechanisms, see: Pickett & O'Brien (2001).

Experimental

Crystal data

 $\begin{bmatrix} Cd_2(C_{13}H_{12}NOS_2)_4 \end{bmatrix} \\ M_r = 1274.22 \\ Monoclinic, P2_1/n \\ a = 10.7922 (3) \\ Å \\ b = 14.7253 (6) \\ Å \\ c = 16.9352 (6) \\ Å \\ \beta = 97.383 (3)^{\circ} \\ \end{bmatrix}$

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) $T_{\rm min} = 0.976, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.067$ S = 1.045392 reflections 337 parameters $V = 2669.00 (16) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.16 \text{ mm}^{-1}$ T = 298 K $0.3 \times 0.2 \times 0.2 \text{ mm}$

25547 measured reflections 5392 independent reflections 4546 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

 $\begin{array}{l} 50 \text{ restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.46 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.28 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

RK acknowledges the Department of Science & Technology for single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2254).

References

Bera, P., Kim, C. H. & Seok, S. I. (2010). Solid State Sci. 12, 532-535.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Onwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431-1436.

Ajibade, P. A., Onwudiwe, D. C. & Moloto, M. J. (2011). *Polyhedron*, **30**, 246–218.

Ivanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). *Inorg. Chim. Acta*, **359**, 3855–3864.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Pickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467–479.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

- Thomas, P. J., Fan, D. & O'Brien, P. (2011). J. Colloid. Interface Sci. 354, 210–218.
- Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.
- Yin, X., Zhang, W., Zhang, Q., Fan, J., Lai, C. S. & Tiekink, E. R. T. (2004).
 Appl. Organomet. Chem. 18, 139–140.

Acta Cryst. (2012). E68, m12-m13 [doi:10.1107/S1600536811051348]

$Bis(\mu-N-benzyl-N-furfuryl dithiocarbamato)-1:2\kappa^3 S, S':S'; 2:1\kappa^3 S, S':S'-bis[(N-benzyl-N-furfuryl dithiocarbamato-\kappa^2 S, S')cadmium]$

R. Kant, V. K. Gupta, K. Kapoor, P. Valarmathi and S. Thirumaran

Comment

The solid state structural chemistry of the group XII 1,1-dithiolates is rich and fascinating in that different structural motifs are found ranging from monomeric, dimeric, tetrameric, linear polymeric and layered structures or three-dimensional networks (Tiekink, 2003). There has been recent interest in the metal dithiocarbamate complexes, which can act as single source precursors in the synthesis of novel metal sulfide nanomaterials (Ajibade *et al.*, 2011; Bera *et al.*, 2010; Thomas *et al.*, 2011). The effect of organic substituents on the deposition temperature and deposition mechanisms have been carried out (Pickett *et al.*, 2001). This study shows that the use of dithiocarbamates as single source precursors depends on the nature of the organic substituents of the dithiocarbamate. In view of these importance we report here the first crystal structure of a dinuclear cadmium(II) dithiocarbamate complex with fufuryl substituent. The four sulfur atoms and the cadmium atom are almost coplanar. The bond angles around the cadmium atom are in the range of 67.18 (2)° to 153.03 (3). The Cd—S bond lengths range are 2.5479 (9) to 2.7952 (7) Å and are in good agreement with those reported for other Cd-dithiocarbamate complexes (Ivanov *et al.*, 2006; Onwudiwe *et al.*, 2010; Yin *et al.*, 2004). The Cd—Cd distance, which indirectly reflects the strength of the binuclear structure, is 3.751 Å.

Experimental

N-Benzyl-1-(furan-2-yl)methanamine (4 mmol, 0.75 g) in ethanol was mixed with carbon disulfide (4 mmol, 0.3 ml) under ice cold condition. To the resultant yellow dithiocarbamic acid solution, $Cd(CH_3COO)_2 2H_2O$ (2 mmol, 0.533 g) in water was added with constant stirring. The solid which precipitated was washed several times with cold water and then dried. Crystals were obtained by the slow evaporation from the solution of title compound in acetonitrile:dichloro- methane (3:1) solvent mixture (m.p. 419 K).

Refinement

All H atoms were positioned with idealized geometry and were refined isotropic using a riding model with C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2Ueq(C]$. The five-membered ring (C19, O20,C21—C23 and benzene ring (C25—C30) weare disordered and were refined using a split model and site occupancy factors of 0.62 (8) and 0.38 (8) using restraints. The atoms of lower occupancy were refined only isotropic.

Figures

Fig. 1. *ORTEP* view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Disordered atoms are connected by full and open bonds. Symmetry codes: i = -x, -y, -z.

 $Bis(\mu-N-benzyl-N-furfuryl dithiocarbamato)-\ 1:2\kappa^3 S, S':S'; 2:1\kappa^3 S, S':S'-\ bis[(N-benzyl-N-furfuryl dithiocarbamato-\kappa^2 S, S') cadmium]$

Crystal data

 $[Cd_{2}(C_{13}H_{12}NOS_{2})_{4}]$ $M_{r} = 1274.22$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 10.7922 (3) Å b = 14.7253 (6) Å c = 16.9352 (6) Å $\beta = 97.383$ (3)° V = 2669.00 (16) Å³ Z = 2

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Radiation source: fine-focus sealed tube graphite Detector resolution: 16.1049 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) $T_{\min} = 0.976, T_{\max} = 1.000$ 25547 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.067$ S = 1.045392 reflections 337 parameters

50 restraints

F(000) = 1288 $D_x = 1.586 \text{ Mg m}^{-3}$ Melting point: 419 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12062 reflections $\theta = 3.2-26.3^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$ T = 298 KBlock, light brown $0.3 \times 0.2 \times 0.2 \text{ mm}$

5392 independent reflections 4546 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -13 \rightarrow 13$ $k = -18 \rightarrow 17$ $l = -21 \rightarrow 20$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 1.097P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.46$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.?

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd1	0.670295 (16)	0.028510 (14)	0.522299 (11)	0.06295 (8)	
S1	0.88674 (6)	0.07350 (5)	0.59816 (4)	0.06729 (18)	
S2	0.81187 (6)	-0.11058 (5)	0.53613 (4)	0.06472 (17)	
S3	0.59547 (7)	0.17993 (5)	0.45861 (4)	0.0771 (2)	
S4	0.50106 (6)	0.00655 (4)	0.38421 (4)	0.05548 (15)	
C1	0.9192 (2)	-0.03999 (17)	0.59042 (13)	0.0524 (5)	
N2	1.02666 (17)	-0.07420 (14)	0.62640 (11)	0.0550 (5)	
C3	1.0579 (3)	-0.17180 (19)	0.62477 (17)	0.0728 (7)	
H31	0.9843	-0.2053	0.6024	0.087*	
H32	1.1218	-0.1807	0.5901	0.087*	
C4	1.1031 (3)	-0.20907 (18)	0.70417 (17)	0.0672 (7)	
O5	1.0175 (2)	-0.21963 (15)	0.75623 (14)	0.0909 (6)	
C6	1.0816 (5)	-0.2554 (2)	0.8242 (2)	0.1140 (13)	
H6	1.0457	-0.2696	0.8697	0.137*	
C7	1.1996 (5)	-0.2669 (3)	0.8169 (3)	0.1199 (14)	
H7	1.2611	-0.2902	0.8550	0.144*	
C8	1.2153 (3)	-0.2363 (2)	0.7378 (2)	0.0991 (11)	
H8	1.2892	-0.2356	0.7149	0.119*	
C9	1.1264 (2)	-0.01506 (18)	0.66416 (15)	0.0599 (6)	
H91	1.1190	0.0436	0.6380	0.072*	
H92	1.2062	-0.0408	0.6553	0.072*	
C10	1.1270 (2)	-0.00068 (16)	0.75214 (14)	0.0532 (5)	
C11	1.0226 (3)	-0.01013 (18)	0.79009 (16)	0.0637 (6)	
H11	0.9473	-0.0273	0.7610	0.076*	
C12	1.0282 (3)	0.0055 (2)	0.87086 (19)	0.0818 (9)	
H12	0.9576	-0.0032	0.8962	0.098*	
C13	1.1369 (4)	0.0336 (3)	0.9134 (2)	0.0993 (11)	
H13	1.1405	0.0451	0.9677	0.119*	
C14	1.2398 (4)	0.0447 (3)	0.8763 (2)	0.1085 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	1.3138	0.0649	0.9052	0.130*	
C15	1.2363 (3)	0.0266 (2)	0.79688 (19)	0.0826 (9)	
H15	1.3086	0.0328	0.7728	0.099*	
C16	0.4963 (2)	0.12557 (17)	0.38686 (13)	0.0542 (6)	
N17	0.42190 (17)	0.17205 (13)	0.33298 (11)	0.0534 (5)	
C18	0.3283 (2)	0.12900 (18)	0.27374 (13)	0.0570 (6)	
H18A	0.2465	0.1543	0.2783	0.068*	
H18B	0.3253	0.0644	0.2843	0.068*	
C19	0.3587 (2)	0.14361 (17)	0.19195 (14)	0.0577 (6)	
O20	0.4689 (6)	0.1278 (6)	0.1716 (3)	0.098 (2)	0.62
C21	0.4628 (9)	0.1535 (6)	0.0916 (4)	0.127 (3)	0.62
H21	0.5309	0.1576	0.0634	0.152*	0.62
C22	0.3435 (12)	0.1714 (7)	0.0617 (5)	0.146 (6)	0.62
H22	0.3134	0.1856	0.0092	0.175*	0.62
C23	0.2689 (5)	0.1636 (4)	0.1307 (3)	0.0649 (16)*	0.62
H23	0.1833	0.1706	0.1313	0.078*	0.62
C26'	0.4898 (17)	0.1293 (13)	0.1865 (9)	0.078 (5)*	0.38
H26'	0.5460	0.1139	0.2308	0.094*	0.38
C27'	0.5280 (10)	0.1396 (9)	0.1110(7)	0.089 (4)*	0.38
H27'	0.6104	0.1285	0.1034	0.107*	0.38
C28'	0.4457 (9)	0.1654 (8)	0.0511 (7)	0.092 (4)*	0.38
H28'	0.4719	0.1681	0.0010	0.110*	0.38
C29'	0.3347 (10)	0.1865 (11)	0.0564 (8)	0.074 (4)*	0.38
H29'	0.2810	0.2061	0.0123	0.089*	0.38
C30'	0.2989 (8)	0.1800 (6)	0.1242 (5)	0.056 (2)*	0.38
H30'	0.2201	0.2037	0.1282	0.067*	0.38
C24	0.4277 (2)	0.27224 (17)	0.32614 (15)	0.0608 (6)*	
H24A	0.4322	0.2881	0.2710	0.073*	
H24B	0.5036	0.2938	0.3575	0.073*	
C25	0.3191 (2)	0.31939 (17)	0.35312 (15)	0.0596 (6)	
C26	0.3238 (6)	0.3228 (5)	0.4336 (4)	0.0671 (15)	0.62
H26	0.3874	0.2960	0.4681	0.081*	0.62
C27	0.2212 (6)	0.3718 (4)	0.4610 (3)	0.0777 (14)	0.62
H27	0.2166	0.3785	0.5151	0.093*	0.62
C28	0.1301 (7)	0.4085 (5)	0.4051 (4)	0.0790 (17)	0.62
H28	0.0653	0.4403	0.4236	0.095*	0.62
C29	0.1289 (7)	0.4014 (5)	0.3283 (5)	0.076 (2)	0.62
H29	0.0668	0.4288	0.2931	0.091*	0.62
C30	0.2188 (8)	0.3541 (6)	0.3026 (5)	0.070 (3)*	0.62
H30	0.2151	0.3433	0.2482	0.084*	0.62
O20'	0.2870 (11)	0.3447 (8)	0.4318 (7)	0.116 (4)*	0.38
C21'	0.1741 (16)	0.3940 (15)	0.4210 (11)	0.118 (8)*	0.38
H21'	0.1307	0.4173	0.4605	0.141*	0.38
C22'	0.143 (2)	0.400 (2)	0.3427 (12)	0.168 (12)*	0.38
H22'	0.0695	0.4277	0.3192	0.202*	0.38
C23'	0.2357 (12)	0.3591 (9)	0.2969 (7)	0.061 (4)*	0.38
H23'	0.2369	0.3602	0.2421	0.073*	0.38

14	(82)	
Atomic displacement parameters	(A^2)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04729 (11)	0.07969 (15)	0.06005 (12)	-0.00253 (9)	-0.00010 (8)	0.01815 (9)
S1	0.0565 (4)	0.0598 (4)	0.0811 (5)	-0.0032 (3)	-0.0080 (3)	0.0110 (3)
S2	0.0555 (3)	0.0749 (4)	0.0621 (4)	-0.0052 (3)	0.0016 (3)	-0.0080 (3)
S3	0.0778 (5)	0.0687 (4)	0.0755 (5)	-0.0147 (4)	-0.0255 (4)	0.0130 (3)
S4	0.0529 (3)	0.0606 (4)	0.0525 (3)	0.0008 (3)	0.0049 (3)	0.0080 (3)
C1	0.0465 (12)	0.0664 (15)	0.0452 (12)	-0.0041 (11)	0.0098 (9)	0.0064 (10)
N2	0.0491 (10)	0.0646 (13)	0.0506 (11)	0.0028 (9)	0.0035 (8)	-0.0021 (9)
C3	0.0701 (17)	0.0738 (18)	0.0729 (18)	0.0165 (14)	0.0038 (13)	-0.0170 (14)
C4	0.0653 (16)	0.0570 (15)	0.0790 (18)	0.0081 (13)	0.0074 (14)	-0.0039 (13)
05	0.0887 (14)	0.0842 (14)	0.1023 (17)	-0.0057 (12)	0.0218 (13)	0.0044 (13)
C6	0.169 (4)	0.074 (2)	0.100 (3)	0.003 (3)	0.020 (3)	0.025 (2)
C7	0.144 (4)	0.086 (3)	0.119 (3)	0.031 (3)	-0.024 (3)	0.020 (2)
C8	0.078 (2)	0.097 (2)	0.119 (3)	0.0280 (19)	-0.0005 (19)	0.014 (2)
C9	0.0426 (12)	0.0744 (17)	0.0618 (15)	-0.0023 (11)	0.0036 (10)	0.0039 (12)
C10	0.0508 (13)	0.0499 (13)	0.0572 (14)	0.0050 (10)	0.0001 (11)	0.0042 (10)
C11	0.0641 (16)	0.0651 (16)	0.0622 (16)	0.0047 (13)	0.0093 (12)	-0.0003 (12)
C12	0.104 (2)	0.0724 (19)	0.0727 (19)	0.0168 (17)	0.0251 (18)	0.0034 (15)
C13	0.131 (3)	0.103 (3)	0.0619 (19)	0.016 (2)	0.003 (2)	-0.0065 (17)
C14	0.102 (3)	0.139 (3)	0.077 (2)	-0.011 (2)	-0.017 (2)	-0.017 (2)
C15	0.0620 (17)	0.108 (2)	0.075 (2)	-0.0077 (16)	-0.0048 (14)	-0.0061 (17)
C16	0.0465 (12)	0.0640 (15)	0.0519 (13)	-0.0065 (11)	0.0055 (10)	0.0094 (11)
N17	0.0505 (10)	0.0560 (11)	0.0518 (11)	-0.0042 (9)	-0.0014 (8)	0.0112 (9)
C18	0.0475 (12)	0.0655 (15)	0.0556 (14)	-0.0041 (11)	-0.0032 (10)	0.0065 (11)
C19	0.0644 (15)	0.0539 (14)	0.0535 (13)	0.0033 (12)	0.0022 (11)	0.0052 (11)
O20	0.075 (3)	0.159 (5)	0.062 (3)	0.004 (3)	0.018 (3)	-0.005 (3)
C21	0.169 (10)	0.149 (8)	0.077 (5)	-0.033 (8)	0.070 (6)	-0.020 (5)
C22	0.307 (17)	0.075 (5)	0.045 (3)	0.031 (6)	-0.025 (5)	0.016 (3)
C25	0.0688 (15)	0.0532 (14)	0.0565 (15)	-0.0112 (12)	0.0068 (12)	0.0050 (11)
C26	0.069 (3)	0.068 (3)	0.070 (3)	0.003 (3)	0.026 (3)	0.000 (2)
C27	0.078 (3)	0.078 (3)	0.083 (4)	0.003 (3)	0.035 (3)	-0.012 (3)
C28	0.082 (4)	0.062 (3)	0.096 (5)	0.009 (3)	0.020 (4)	-0.002 (3)
C29	0.059 (3)	0.053 (3)	0.114 (5)	0.016 (2)	0.002 (3)	0.006 (3)

Geometric parameters (Å, °)

Cd1—S2	2.5479 (7)	C18—H18B	0.9700
Cd1—S3	2.5618 (8)	C19—O20	1.300 (7)
Cd1—S1	2.6028 (7)	C19—C30'	1.353 (8)
Cd1—S4 ⁱ	2.6355 (6)	C19—C23	1.358 (6)
Cd1—S4	2.7949 (6)	C19—C26'	1.445 (19)
S1—C1	1.716 (3)	O20—C21	1.400 (9)
S2—C1	1.730 (2)	C21—C22	1.347 (12)
S3—C16	1.711 (2)	C21—H21	0.9300
S4—C16	1.754 (3)	C22—C23	1.507 (11)

S4—Cd1 ⁱ	2.6355 (6)	С22—Н22	0.9300
C1—N2	1.337 (3)	С23—Н23	0.9300
N2—C9	1.466 (3)	C26'—C27'	1.400 (15)
N2—C3	1.477 (3)	С26'—Н26'	0.9300
C3—C4	1.476 (4)	C27'—C28'	1.316 (13)
C3—H31	0.9700	С27'—Н27'	0.9300
С3—Н32	0.9700	C28'—C29'	1.252 (13)
C4—C8	1.333 (4)	C28'—H28'	0.9300
C4—O5	1.365 (3)	C29'—C30'	1.260 (12)
O5—C6	1.369 (4)	С29'—Н29'	0.9300
C6—C7	1.306 (6)	С30'—Н30'	0.9300
С6—Н6	0.9300	C24—C25	1.483 (4)
С7—С8	1.443 (5)	C24—H24A	0.9700
С7—Н7	0.9300	C24—H24B	0.9700
С8—Н8	0.9300	C25—C23'	1.356 (13)
C9—C10	1.504 (3)	C25—C26	1.359 (6)
С9—Н91	0.9700	C25—C30	1.388 (8)
С9—Н92	0.9700	C25—O20'	1.468 (14)
C10—C11	1.374 (4)	C26—C27	1.446 (9)
C10—C15	1.378 (4)	С26—Н26	0.9300
C11—C12	1.381 (4)	C27—C28	1.384 (11)
C11—H11	0.9300	С27—Н27	0.9300
C12—C13	1.359 (5)	C28—C29	1.303 (9)
C12—H12	0.9300	C28—H28	0.9300
C13—C14	1.355 (5)	C29—C30	1.314 (9)
С13—Н13	0.9300	С29—Н29	0.9300
C14—C15	1.366 (5)	С30—Н30	0.9300
C14—H14	0.9300	O20'—C21'	1.410 (14)
C15—H15	0.9300	C21'—C22'	1.330 (16)
C16—N17	1.325 (3)	C21'—H21'	0.9300
N17—C18	1.473 (3)	C22'—C23'	1.475 (17)
N17—C24	1.482 (3)	C22'—H22'	0.9300
C18—C19	1.480 (3)	C23'—H23'	0.9300
C18—H18A	0.9700		
S2—Cd1—S3	153.02 (3)	O20—C19—C30'	101.5 (5)
S2—Cd1—S1	70.71 (2)	O20—C19—C23	115.1 (4)
S3—Cd1—S1	101.57 (2)	C30'—C19—C23	18.3 (4)
S2—Cd1—S4 ⁱ	104.24 (2)	O20—C19—C26'	11.8 (8)
S3—Cd1—S4 ⁱ	102.47 (2)	C30'—C19—C26'	111.6 (7)
S1—Cd1—S4 ⁱ	114.07 (2)	C23—C19—C26'	126.3 (7)
S2—Cd1—S4	107.67 (2)	O20—C19—C18	122.8 (3)
S3—Cd1—S4	67.15 (2)	C30'—C19—C18	135.4 (4)
S1—Cd1—S4	153.00 (2)	C23—C19—C18	121.6 (3)
S4 ⁱ —Cd1—S4	92.662 (19)	C26'—C19—C18	112.1 (6)
C1—S1—Cd1	83.88 (8)	C19—O20—C21	106.1 (6)
C1—S2—Cd1	85.33 (8)	C22—C21—O20	109.9 (7)
C16—S3—Cd1	91.52 (9)	C22—C21—H21	125.0
	× /		

C16—S4—Cd1 ⁱ	98.92 (8)	O20—C21—H21	125.0
C16—S4—Cd1	83.18 (8)	C21—C22—C23	105.8 (6)
Cd1 ⁱ —S4—Cd1	87.338 (19)	C21—C22—H22	127.1
N2—C1—S1	120.37 (18)	С23—С22—Н22	127.1
N2—C1—S2	119.87 (19)	C19—C23—C22	102.0 (5)
S1—C1—S2	119.76 (13)	С19—С23—Н23	129.0
C1—N2—C9	121.3 (2)	С22—С23—Н23	129.0
C1—N2—C3	123.0 (2)	C27'—C26'—C19	116.6 (12)
C9—N2—C3	115.4 (2)	C27'—C26'—H26'	121.7
C4—C3—N2	113.2 (2)	C19—C26'—H26'	121.7
C4—C3—H31	108.9	C28'—C27'—C26'	119.1 (12)
N2—C3—H31	108.9	C28'—C27'—H27'	120.4
C4—C3—H32	108.9	C26'—C27'—H27'	120.4
N2—C3—H32	108.9	C29'—C28'—C27'	125.0 (11)
H31—C3—H32	107.7	C29'—C28'—H28'	117.5
C8—C4—O5	110.0 (3)	C27'—C28'—H28'	117.5
C8—C4—C3	132.6 (3)	C28'—C29'—C30'	117.0 (12)
05	1174(2)	C28'—C29'—H29'	121.5
C4-05-C6	106.0(3)	C30'-C29'-H29'	121.5
C7 - C6 - 05	111 4 (4)	$C_{29}'-C_{30}'-C_{19}$	129.3 (9)
C7—C6—H6	124.3	C29'-C30'-H30'	115.3
O5-C6-H6	124.3	C19—C30'—H30'	115.3
C_{6}	106.2 (3)	N17-C24-C25	113.5 113.5(2)
C6—C7—H7	126.9	N17-C24-H24A	108.9
C8—C7—H7	126.9	$C_{25} - C_{24} + H_{24A}$	108.9
C4 - C8 - C7	1064(3)	N17—C24—H24B	108.9
C4 - C8 - H8	126.8	$C_{25} - C_{24} + H_{24B}$	108.9
C7 - C8 - H8	126.8	$H_{24A} - C_{24} + H_{24B}$	107.7
$N_{2}^{2} = C_{2}^{2} = C_{10}^{10}$	115.2(2)	$C^{23} - C^{25} - C^{26}$	128.6 (6)
N2H91	108.5	$C_{23} = C_{23} = C_{20}$	95(8)
C_{10} C_{9} H_{91}	108.5	$C_{23} = C_{23} = C_{30}$	122.0(5)
N2_C0_H02	108.5	$C_{23}^{-1} = C_{25}^{-1} = C_{30}^{-1}$	122.0(3) 108.3(7)
$(10 - (9 - H))^2$	108.5	$C_{23} = C_{23} = 0.20$	20.3(7)
H01_C0_H02	107.5	$C_{20} = C_{23} = O_{20}$	20.3(3)
$C_{11} - C_{10} - C_{15}$	117.9 (3)	$C_{30} = C_{23} = C_{20}$	102.1(0) 117.7(6)
$C_{11} = C_{10} = C_{13}$	117.9(3) 123.4(2)	$C_{23} = C_{23} = C_{24}$	117.7(0) 113.4(4)
$C_{11} = C_{10} = C_{10}$	123.4(2) 118.7(2)	$C_{20} = C_{23} = C_{24}$	113.4(4) 124.5(4)
$C_{10} - C_{11} - C_{12}$	110.7(2) 120.8(3)	020'-025-024	124.3(4) 1334(5)
$C_{10} = C_{11} = C_{12}$	110.6	$C_{20} = C_{20} = C_{24}$	133.4(3) 114.1(6)
C_{10} C_{11} H_{11}	119.0	$C_{23} = C_{20} = C_{27}$	114.1 (0)
C_{12} C_{12} C_{11}	119.0	$C_{23} = C_{20} = H_{20}$	122.9
$C_{13} - C_{12} - C_{11}$	120.1 (5)	$C_2 / - C_2 O - \Pi_2 O$	122.9
C_{13} $-C_{12}$ $-\Pi_{12}$	120.0	(20 - (2) - (20))	110.8 (J) 120.6
C11	120.0	$C_{20} = C_{21} = H_{21}$	120.0
$C_{14} = C_{13} = C_{12}$	119.5 (3)	$C_{20} = C_{2} / -H_{2} / C_{20} = C_{27} / C_{20} = C_{27} / C_{20} / C_{27} / C_{20} = C_{27} / C_{20} / C_{27} / C_{20} / C_$	120.0
C14—C13—H13	120.2	$U_{29} = U_{28} = U_{27}$	124.5 (6)
C12—C13—H13	120.2	C29—C28—H28	117.7
C13—C14—C15	120.9 (3)	C2/—C28—H28	117.7
C13—C14—H14	119.6	C28—C29—C30	117.4 (7)

C15—C14—H14	119.6	С28—С29—Н29	121.3
C14—C15—C10	120.8 (3)	С30—С29—Н29	121.3
C14—C15—H15	119.6	C29—C30—C25	122.8 (7)
C10-C15-H15	119.6	С29—С30—Н30	118.6
N17—C16—S3	121.03 (19)	С25—С30—Н30	118.6
N17—C16—S4	121.03 (18)	C21'—O20'—C25	108.3 (10)
S3—C16—S4	117.88 (13)	C22'—C21'—O20'	105.7 (15)
C16—N17—C18	123.3 (2)	C22'—C21'—H21'	127.2
C16—N17—C24	122.7 (2)	O20'—C21'—H21'	127.2
C18—N17—C24	114.03 (18)	C21'—C22'—C23'	113.1 (15)
N17—C18—C19	111.06 (19)	C21'—C22'—H22'	123.5
N17—C18—H18A	109.4	C23'—C22'—H22'	123.5
C19—C18—H18A	109.4	C25—C23'—C22'	104.1 (11)
N17—C18—H18B	109.4	C25—C23'—H23'	127.9
C19—C18—H18B	109.4	C22'—C23'—H23'	127.9
H18A—C18—H18B	108.0		

Symmetry codes: (i) -x+1, -y, -z+1.

Fig. 1